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Abstract

In barrier methods for constrained optimization, the main work lies in solv-
ing large linear systems Kp = r, where K is symmetric and indefinite.

For linear programs, these KKT systems are usually reduced to smaller
positive-definite systems AH-ATq = s, where H is a large principal submatrix
of K. These systems can be solved more efficiently, but AH-1AT is typically
more ill-conditioned than K.

In order to improve the numerical properties of barrier implementations, we
discuss the use of "reduced KKT systems", whose dimension and condition lie
somewhere in between those of K and AH-IA'. The approach applies to linear
programs and to positive semidefinite quadratic programs whose Hessian H is
at least partialiy diagonal.

We have implemented reduced KKT systems in a primal-dual algorithm
for linear programming, based on the sparse indefinite solver MA27 from the
Harwell Subroutine Library. Some features of the algorithm are presented,
along with results on the netlib LP test set.
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2 Redu,.d A KT Systems

1. Introduction

We discuss harrier methods for solving linear and quadratic programs expressed in
the standard form

minimize CTx + xTQx

subiectto Ax=b, l<x<u,

where A is m x n (m < n) and Q is symmetric positive semidefinite. The problem
is a linear program (LP) when Q = 0, and a quadratic program (QP) otherwise.
We assume that an optimal solution (x*,r*) exists, where r* is a set of Lagrange
multipliers for the constraints Ax = b.

Implicit within most of the current barrier or interior-point algo.ithms is a so-
called KKT system of the form

K ) AT), (1.2)

in which H = Q + D where D is positive senidefinite and diagonal. The search
direction (Ax,Air) is used to update the current solution estimate (x,7r). In some
cases it is obtained by solving the same KKT system with more than one right-hand
side. It is critical that such systems be solved quickly and reliably.

1.1. Reduc,.d KKT Systems

If H is nonsingular and diagonal (as in the LP case), it is common to use it as a
block pivot and reduce (1.2) to a system involving AH-IAT. In general this is an
unstable process beaauise U usually contains some very small diagonals. The main
advantages are that t'w '" is much smaller than K and it is positive-definite.

Our aim is to discuss an intermediate strategy in which part of H is used as
a block pivot. The reduced 3ysteins obtained are considerably smaller than K,
and typically no more than twice as la.ge as AH-AT The approach retains the
numerical reliability of factoring the full wautix K, with an efficiency that is closer
to that of using AH-1AT. It also provides a conveient way of dealing with free
varibles and dense columns (i.e., variables with bounds -oo < x, _5 oo and columns
of A that have many nonzeros).

In the QP case when Q is at least partly diagonal, reduced KI[ 6 .yacnis can
still be formed efficiently.

The proposed use of reduced KKT systems is motivated by the sensitivity anal-
ysis in [Pon9O] and by the investigation of preconditioners for KKT systems in
[GMPS90]. Note from both references that large diagonals in 11 give K a decep-
tively high condition number, but they do not cause sensitivity in the solution of
systems involving K. (Similarly, a system Dx = b with D = diag(102°, 1010, 1, 1, 1)
has a well-defined solution, even though cond(D) = 1020.)

In fact, large diagonals of 11 are desirable, since they are obvious candidates for

a block pivot. For example, if 1JAil - 1, any diagonals If,, signif~cantly larger than
one could be included in the block pivot. The associated reduced system reflects the
true sensitivity of linear systems involving K.
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2. A Primal-Dual QP Algorithm

For concreteness we describe the main parts of a primal-dual barrier algorithm for
LP and QP.' After deriving the KKT systems to be solved, we are able to discuss
certain numerical issues.

In order to handle upper and lower bounds symmetrically, we slightly generalize
the approach of Lustig et al. [LMS89,LMS90] and restate problem (1.1) as follows:

minimize cTX + XTQX + IITx!I2 + 11pl12
V, 31,3,

subject to Ax +bp = b, (2.1)
X - Sl l,

X +82 - U,

with s,, S2 > 0. The scalars y and b are intended to be "small". The dual variables
associated with the three sets of equality constraints will be denoted by 7r, z and
-y. At a solution, z and y are non-negative.

We assume that I < u, since fixed variables (lj = uj) can be absorbed into b. If
Ij = -oo or uj + oo, we omit the corresponding equation in x-s 1 = I or x+s 2 = u.
(In particular, both equations are omitted for free variables.) Symmetric treatment
of the bounds via sl and S2 allows a problem to be treated "as it stands", without
converting the bounds to 0 < x < u (say). The latter practice is hazardous in the
case of "almost free variables", whose bounds are not large enough to be treated as
infinite (e.g., _10 6 < xj < 106).

2.1. The Barrier Subproblem

For some scalar 1> 0, the associated barrier subproblem is to minimize

cTx + .XTQX + IIxII 2 + 1IIPII 2 - p ln(si), - IL ln(s2)j

subject to the same equality constraints. Optimality conditions for this subproblem
include the equation p = 6br. We can therefore eliminate p immediately. The
remaining optimality conditions may be stated as the following equations:

b - Ax - 62r r

I - X + S1 ti
u - 8--2 t2

ft (x'si's2,r'z'Y) = c+Qx + y2x - ATr - z + y t

pe - S1Ze

pe - S2Ye v2

(2.2)
where e is a column of ones and S1, S2, Z, Y are diagonal matrices composed from

S1, s2, z, y., Primal-dual methods maintain positive apl.roximations to all of the
latter vectors.

'Related references for LP are [Meg86,K1MY88,M MS89,LMS89,LMS90,Meh89,Meh90,Mehgl].
Some dealing explicitly with QP are [MAR88,MA89,AIIRT90,CLMS90,JSS90,Poii9O,VC91].
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2.2. The Newton Direction

The Newton equations for generating a search direction (Ax, Asl, As 2, Aiar, Az. Ay)
are

AAx + 62 A r = r
Ax - As 1  = h
A x + A 52 = t2 (2 .3 )

-(Q + ,')Ax + ATA7r + A z - Ay = t

Z.4s + S1 Az =V

YAs 2  + S2 Ay =V2,

which may be solved by defining

Ho = Q+ S71 Z+ S Y, (2.4)

w = STI(Ztl + vI) + Sj1 (Yt 2 - v2)- t,

solving the KKT-like system

K .xw1 O+21 AT (2.5)-Ar r A -b2I l= 25

and finally solving the equations

As, = AX-tl,
As 2 = t2 - AX, (2.6)

S1Az = v, - ZAs 1 ,
S 2 Ay = v2 - YAs 2.

It is straightforward to show that any values of x and 7r give the same search
direction (As 1 , As 2 , Az, Ay).

2.3. Regularization

The above definition of K shows its dependence on - and 6. Later we shall not need
H0 itself, but will work with H - Ho + 721.

The perturbations involving 7 and 6 are included to "regularize" the problem.

The '.-in IayxII2 ensures that IIx*II is bounded, and the term b p allows Ax = b to
be sazisfied in some least-squares sense if the original constraints have no feasible
sob. tLion. An important property is that both perturbations help preserve the non-
singularity of K. For example, if A does not have full row rank, K is singular unless
we choose 6 > 0. Similarly, suppose some columns of A associated with free vari-
ables are linearly dependent; if the corresponding columns of HO are also dependent

(e.g. if the problem is an LP), K is singular unless we choose -y > 0. (An alternative
means for preserving nonsingularity with free variables is given in [GMPS91].)

Since p = 6ir at a solution, the regularization terms in the objective function are
effectively I1yx112 + IjIbrII 2 , which has a satisfying symmetry and shous that both

x* and 7r are bounded if 7 and 6 are nonzero.
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Objective perturbatlons of the form .1 JxII2 have been studied by Mangasarian et
al. [MM79,Man84], who show that the LP solution is not perturbed if y is sufficiently
small. The approach has been successfully pursued in the interior-point context by
Setiono [Set90b].

An alternative form of regularization is the proximal-point method of Rockafellar
[Roc76], which involves an objective term of the form -117(x - xk)112 and does not
perturb the problem as Xk -. x* even if - is not particularly small. Again, this
approach has been successfully explored by Setiono [Set89,Set9Oa,Set9Oc].

2.4. A Predictor-Corrector Approach

A number of authors (e.g. [MAR88,KLSW89,JSS90]) have suggested alternatives
to the Newton direction. Most of these suggestions may be traced to the idea of
"extrapolation" first described by Fiacco and McCormick [FM681. The algorithm
we have implemented is similar to that suggested by Mehotra [Meh89,Meh90]. Im-
plementations based on his suggestion have been shown to be efficient in practice
(see [Meh89,Meh9O,LMS90]).

The approach requires two solves of the Newton system (2.3) with different
vectors v, and v2 in the right-hand side. A predictor step ( A§, A f2 , A, A)
is obtained by solving with v, = -S 1 Ze and V2 = -S 2Ye (i.e. 1L = 0 in (2.2)). A
corrector direction is then computed using v, = ye - S 1Ze - 4AS 1 2e and v2 =
pe - S2Ye - A92AYe.

If the predictor step is "large" it seems possible that a poor corrector direction
will result. Therefore as a precaution we sometimes scale the predictor step down
before constructing the second v, and v2. Let 6. and 6z be maximum steps along
tite predictor direction that keep (S3,s2) and (z,y) non-negative, and let 0 = 0.1.

If d. < 4, we consider that the predictor steps A, and A, 2 are excessively large
and scale them down by the factor r(2 - T), where r = /

Similarly if 6, < 0, we scale A and A down by the factor r(2 - r), where
T = d'/0. (Note that 0 < r(2 - r) < 1 in both cases.)

We have experimented with a few other values of 0 but not observed any pro-
found effect. The value € = 0 corresponds to accepting the predictor step as it
stands, and € = 1 would "interfere" rather too often. The chosen value 0.1 gave
slightly better performance than 0, as measured by the number of thnes that the
corrector direction was accepted.

It can be demonstrated that the corrector direction is not necessarily a descent
direction for I ful, 2 . We are therefore prepared to fall back on the Newton direction
as described below. Different but analogous precautions are taken by Mehrotra
[Meh9O].

2.5. Steplengths

Given a positive vector z and a search direction Az, we need a trial steplength A..
that keeps z + azAz positive. It is common practice to define such a steplength as

az = a min z3/IAz,I,
Az 3 <0
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where a E (0, 1). Such a steplength might be written as the function a.. = a(z),
with Az and a known from the context. In our case we need two such steplengths,

a = a(91,2) and a, = a(z,y),

where we mean that a, keeps both s, and S2 positive, and a, keeps both z and
y positive. Following [LMS90] we used a = 0.99995 for the numerical results of
Section 7.

Given a descent direction, the usual procedure in a descent method is to take a
step along the direction that reduces some merit function. In our case it is not clear
that a suitable reduction in I1fMII 2 can be obtained using the same step a(sl, s 2 , z, y)

in all the variables. It has been observed in practice [LMS89,LMS90] that taking
different steps in the primal and dual variables leads to fewer iterations when solving
linear programs. One reason for this is clear. Suppose we are solving an LP with
b = - = 0. After a step a , in the primal variables and a, in the dual variables we
have

r -(1-a , )r and t -(1-a,)t.

(We assume r 0 0, t 0 0, a- < 1 and a, < 1.) If we take the same step in the primal
and dual variables and wish to remain feasible to the same extent, the required step
is

a(s, s 2, z,y) = min(aI az),

and the total reduction in 11rJ12 + t]J2 will not be as great. After 20 or 30 iterations

the reduction attained by the two strategies may be significantly different,

2.6. The Linesearch

Gill et al. [GMPS91, Section 7.1] analyze a primal-dual barrier algorithm for linear
programming based on the Newton direction and separate steps in the primal and
dual variables. They show that the component of the Newton direction in the primal
variables is a descent direction for a merit function based on the primal barrier
function.2 It is proved prove that the iterates converge to a solution provided the
step taken in the primal variables reduces this merit function. (Such a step always
exists.) Moreover, from the nature of the merit function and the fact that the
Newton direction is a direction of sufficient descent, it is clear that almost any
nonzero step in the primal variables will suffice. The step in the dual variables is
almost arbitrary. The only requirement is that it be bounded and that z and y be
kept nonzero.

The merit function in our implementation is different from that advocated in
[GMPS91] but is similar in spirit. We require that IflI12 be reduced. We anticipate
that a reduction in this function almost always implies a reduction in Ai(x, .s, s 2 , p).

2 For LP problems of the form (2.1) without regularization, the merit function would be
M(X, si, s2, p) = cTx - lZ 3 ln(si), - ,, ln(s4), + p(Ilb - AxII + Ill - r + s, i11 + IIJ - z - S211).



2. A Primal-Dual QP Algorithm 7

Briefly, if a trial step along the corrector direction reduces 11f0112, the ;tID is
taken and the iteration is complete. Otherwise, the Newton direction is computed
and used to reduce If.I7 (perhaps with the aid of a back-tracking linesearch'.
Convergence is assured if K remains sufficiently nonsingular.

More precisely:

1. Separate steplengths ct = a(SI,s2) and ce = a(z, y) are computed for the
corrector direction. If these reduce the merit function IIf II 2 by a sufficient
amount, they are accepted and the ite ation is complete.

2. Otherwise, the Newton direction (2.3) - computed along with new steplengths
a, and a,. If the merit function is sufficiently reduced, the steps are taken
and the iteration is complete.

3. Otherwise, the steplengths are made equal (to the smaller of the two) and
the merit function is tested again. If necessary, the steplengths are repeatedly
halved until the merit function is suitably reduced.

4. If up to 5 halvings of the steplengths fail to reduce the merit function, we
assume that the search direction has insufficient accuracy. The linesearch
terminates with a request for stricter tolerances in factorizing the KKT system
(see Section 4). In practice, this is perhaps the most important function of
the linesearch.

2.7. Reducing the Barrier Parameter i

The initial and minimum values of ji are to some extent user-specifed; see Section 6.
At intervening iterations, p is reduced to (1 - ce)p, where a." = min(a,,az,a).
Thus, p decreases monotonically and more rapidly if larger steps are taken.

This choice of p is simple and does not depend on the duality gap (which is
difficult to define for infeasible poi.,tb). It appears to be satisfactory in practice.
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3. Reduced KKT systt, °s

If H = Ho + y21 is nonsingular, p2.5) may be solved using the range-space equations
of optimization:

(AH-AT+ 62 1)Afr = r - A lw, HAx = ATAdr + w. (3.1)

The main benefit is that AH-1AT+ P2I is much smaller than K and is positive
definite, so that well-established sparse Cholesky factorizations can be applied. Some
drawbacks are as follows:

1. AH- 1AT+ 621 is normally more ill-conditioned than K.

2. Free variables complicate direct use of (3.1) by making Ho singular.

3. Relatively dense columns in A degrade the sparsity of Al-lAT+ 62! and its
factors.

In general, small diagonals of I prevent it from being a "good" block pivot from
a numerical point of view. That is, if Gaussian elimination were applied to K, not
all diagonals of H would be acceptable as pivots. To overcome this difficulty, we
note that in practice most of H is likely to be acceptable as a block pivot. Thus we
partition H and A as

where the diagonals of HN are a "reasonable" size compared to the nonzeros in the
corresponding columns of N. In general, a reordering of the vaiables is implied.
The column dimension of N may be aniywhere from 0 to n (and similarly for B).
The KKT system (2.5) becomes!HN NT\ ( AXN (WN) 32

/Hn B T AXB = wB , (3.2)
\N B - ) -. Ar r

which may be solved via the reduced MK' system

IL (AzX ) = ( I = N )7 621)-Atr r- NIlwN 13 -NII, 'NT - ,

(3.3)

The final step is to solve the typically diagonal system HiNAXN = WN + N'A~r.
If Ifb happens to be all of H, KB = -AH-lAT_ b2I and the reduced KIT

system is equivalent to (3.1). Otherwise, K is a symmetric indefinite matrix. Like
K it can be processed by a sparse indefinite solver such as MA27 [DRS2,DR83]
(an implementation of the factorization described in [131 71,131(77]). The above
difficulties are resolved as follows:
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1. Kg need not be more ill-conditioned than K.

2. Free variables are always included in B.

3. Dense columns of A are also included in B. (They do not necessarily degrade
the sparsity of the K9 factors.)

As with current Cholesky solvers, MA27 has an Analyze phase (to choose a row
and column ordering for K89 and to set up a data structure for its factors) and a
Factor phase (to compute the factors themselves). Some disadvantages of working
with reduced KKT systems are:

1. Whenever the N-B partition is altered, a new Analyze is required. This is
usually less expensive than the Factor phase, often by an order of magnitude,
and we expect it to be needed only sometimes (typically the last few iterations).
However, it can be costly for certain structares in A.

2. To date, sparse indefinite factorization is more expensive than Cholesky fac-
torization when there is a large degree of indefiniteness (as in KKT systems).

3.1. Related Work

To keep 1H nonsingular in the presence of free variables, some authors have treated
each such variable as the difference between two nonnegative variables., Lustig,
et al. [LMS89,LMS90] report satisfactory performance on the netlib LP test set,
which contains a few relevant examples. To deal with problems invoicing many free
variables, others authors have introduced inovira artificial bounds (, .g. [MaixS9]
and Vanderbei [Van9Oa], who cites difficulties with the first approach).

Dense columns have beer, handled by using Cholesky factors of the sparse part
of A1-1ATto precondition the conjugate-gradient method (e.g. [GMSTW86]) or to
form a certain Schur complement IMarx89,LMS89]. A difficul.y ;s that the "sparse"
Cholesky factor usually becomes even more ill-conditioned than the one associated
with all of Al-I1AT. More recently, the approach of splitting or stretching dense
columns has been proposed and implemented with success [LMC89,Van9Ob]. The
increased problem size is perhaps an inconvenience if not a difficulty. (See also Grcar
[Grc9O], who recommends the term stretching and gives an extremely thorough
development and analysis of this new approach to solving sparse linear equations.)

Further recent work on solving large indcfinite systems (to avoid the difficulties
associated with A IlAT) appears in [Tur90,Meh9l,FM9l,VC9l]. Iterative solution
of the full KKT system is explored in [GMPS90].

3.2. Quadratic Programs

In general, the Hessian of a convex quadratic objective will have the form

Q= ET  (3.4)( Q )
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where D is diagonal and positive definite, and the full Q is positive semidefinite.
The dimensions of each partition depend on the application and could be anything
from 0 to n.

The associated matrix H = Q + Sj*1Z + S2"1Y has the structure

H= ET) (3.5)
E

where I and b are diagonal. Reduced KKT systems can be formed as before, using
suitably large diagonals in diag(t, b) as a block pivot. Variables associated with
Q are most easily dealt with by keeping them in the "B" partition of K (alongside
those associated with dense columns of A).

A diagonal of diag(/, b) may be judged "suitably large" by comparison with
the corresponding column of A. (Since Q and H are semidefinite, there is no need
to compare a diagonal of b with the corresponding columns of E.)

3.3. Separable QP

To match the OB1 implementation based on AH-AT [LMS90], Carpenter et al.
[CLMS90] have emphasized the case where Q and E are null and Q is purely di-
agonal. Any convex QP can be transformed into this case by using the Cholesky
factorization ppT= LL T, where P is a permutation matrix and L is lower trian-
gular (and possibly trapezoidal). Introducing linear constraints of the form

XL = LrPxQ

leads to a larger problem of the required form.
Such an approach may often be satisfactory, especially if the dimension of Q is

relatively low. However, some implementations based on AI-AT would have diffi-
culty with the additional free variables xL. Even if these are dealt with "correctly"
via the KKT system, the factors of the reduc,d KKT systems (which now involve
L) are likely to be more dense than in the preceding direct approach.

Further discussion of this subject, along with numerical comparibons, appears in
[VC91].

In summary, the use of reduced IKT systems for structured sparse QP Hessians
(3.4) provides greater flexibility, and hence greater efficiency in at least some cases,
than use of the full KKT system [Pon90] or the fully reduced system A IIA T

[CLMS90].
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4. Stability and Sparsity Tolerances

Let S = -(NH; lNT+ 62I) be the Schur complement appearing in the south-east
corner of KB (3.3). (We assume HrN is diagonal.) In our implementation, three
parameters are used to control the choice of N and the factorization of KB, with
typical values as follows:

Htol = 10-6,
ndense = 10,
factol = 0.01.

Note that small diagonals of Ib lead to large entries in S, while "dense" columns
in N lead to excessive density in S. We therefore use Htol and ndense to control
the partitioning of K in the following way. The j-th column of 11 is included in HN
(and column aj of A is included in N) if

1. Hjj > Htol Ijill, and

2. ai has fewer than ndense nonzeros.

Since we scae A to give IJaII ; 1 for all j, we avoid storing an n-vector of norms
by simplifying the first test to just Hj1 > hol. Including 11aill would give slightly
greater reliability.

The third parameter factol is used as the stability tolerance u [DR82,DR83]
when the Factor phase of MA27 is applied to hED. In the extreme case (N void,

B = -At-'AT), factol is inoperative since MA27 is then performing Cholesky
factorization on a (negative) definite matrix. In all other cases, factol affects the
stability of the numerical factorization and the fill-in in the factors (beyond that
predicted by the MA27 Analyze).

4.1. Iterative Refinement; Tightening Tolerances

Whenever a KKT system of the form

is solved (via a reduced KKT system), we estimate whether the tolerances lltol and
factol are too lax by computing the residuals for the full system:

q2 (AX r r - AAx-6 (4.1)

Let the relative error in the residual be Crror = (11q,1I + 1q211)/(IwII I II'11).
If error > 0.01, we request that fttol be increased by a factor of 100 'and factol be

increased by a factor of 10, up to limits of 0.1 and 0.2 respectively. The partitioning
of K and the factorization of the reduced KKT system are then repeated. If the
tolerances are already at their limiting values, the program terminates with an error
condition.
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Otherwise, if error > 10- 4 , we perform one step of iterative refinement:

) (_ q, AT Ax p
Sq2 Ar Air P2

If the new relative error satisfies error > 10- 4 , we request increased tolerances as
in the previous paragraph.

If error < 10- 4 either before or after refinement, the solve is taken to be suffi-
ciently accurate.

The predictor-corrector algorithm uses more than one solve to obtain a search
direction. Forming the products AAx and ATATr in (4.1) is moderately expensive,
but at least for the last solve, these vectors can be saved and used to update the
residuals r and t during the linesearch:

r 4- r - a,(AAx) - c.6 2Ar,

t 4- t + a.,(Q + -21)AX - az(ATAr + Ay - Az).

Direct computation of r = b - Ax - 6 2 r and t = c + QX + 7 2X - ATr - z + y can
then be carried out less often-say every 10 iterations, or whnnever 1lirl or 11tl drops
significantly.

Note that it is most effective to use iterative refinement on the full KKT system
as described, not on the reduced system. In particular, even implementations based
on AH-1AT should compute corrections for both Ax and Ar.
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5. Numerical Examples

To illustrate some numerical values arising in the reduced KKT systems of Section
3, we apply the basic primal-dual algorithm to two LP problems of the form

min cTx subject to Ax b, x > 0,

with

A 1), 3 3( 1 0 01 21 2

using MATLABTM [MLB87] with about 16 digits of precision.

5.1. A Non-degenerate LP

We first let the right-hand side and optimal solution be

b- 3 * 0 0 1 1 T
30 1

At the start of the fifth iteration of the primal-dual algorithm, we have
X = (3.9e-6, 3.2e-6, 1.000005, 0.999992), z = (0.70, 0.70, 2.0e-6, 1.7e-6), and

1.8e+5 1 1
2.2e+5 1 2

K = 2.0e-6 3 1 .. H A T

1.7e-6 3 2 A

1 1 3 3
1 2 1 2

where H = X- 1Z. Recall that Htol defines which diagonals of H are considered
large enough to form a block pivot. In terms of conventional error analysis for
Gaussian elimination, Htol = 1 or 0.1 should be "safe", while Iltol < 10- 3 (say)
is likely to be unreliable. Various values of Htol give the following reduced KKT
systems:

Htol KB cond(KIB)

/2.0e-6 3 1
011.7e-6 3 2 7.5

.13 3 -le-5 -le-5

1 2 -le-5 -2e-5

17e-6 3 2
1.8e-6 3 -4e+6 -le+6 5e+6

2 -le+6 -5e+5 )

le-20 ( -le+7 -5e+6 58
-5e+6 -3e+6 )
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The large diagonals of H make K seem rather ill-conditioned (cond(K) = 10'),
but pivoting on those diagonals (Htol = 0.1) gives a very favorable reduced system:
cond(KB) = 7.5. Allowing one small pivot (Htol = 1.8e-6) gives the expected large
numbers and high condition: cond(Kn) % 106. A second small pivot would normally
have a similar effect, but here we have m = 2. The large numbers arising from m
small pivots happen to form a very well-conditioned reduced system: cond(KB) =

cond(AH- 1A T ) = 58.
In general, the structure of K is such that pivoting on any nonzero diagonals of

H should be safe if the fohowing conditions hold:

* There are m or more small pivots of similar size (to within one or two orders
of magnitude).

" The associated m or more columns of A form a well-conditioned matrix.

Unfortunately, in the presence of primal degeneracy there will be less than m small
pivots, as the next example shows.

5.2. A Degenerate LP

Now let the right-hand side and optimal solutioi, be

b X*= 0 0 0 1b= 2

At the start of the sixth iteration of the primal-dual algorithm, we have
x = (3.6e-7, 6.0e-7, 9.3e-7, 0.9999987), z = (0.61, 0.32, 0.29, 2.2e-7), and

1.7e+6 1 1
5.3e+5 1 2

K 3.le+5 3 1
2.2e-7 3 2

1 1 3 3
1 2 1 2

Two representative values of Htol give the following reduced KKT systems:

Hiol IAB  cond(Kjj)

(2.2e-7 3 2
0.1 3 -3e-5 -le-5 8e+5

2. -le-5 8e+-5

le-20 (-4e+7 -3e+7 le+13

(-3e+7 -2e+7)

We see that the partially reduced system has a considerably lower condition than
the fully reduced system. After one further iteration, the contrast is even greater
(see the second table below).
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5.3. Condition Numbers at Each Iteration

To further illustrate the effect of small H pivots, we list the condition of the reduced
KKT systems arising at each iteration of the primal-dual algorithm with various
values of Htol. The barrier parameter A does not appear in K, but it is listed for
reference.

For the first (non-degenerate) problem, the following condition numbers cond(KB)
were obtained:

Itn Htol: 0.1 le-3 le-4 1.8e-6 le-20

1 3e-2 14 14 14 14 14
2 2e-3 72 300 300 300 300
3 2e-4 8 59 59 59 59
4 2e-6 7 7 5e+4 74 74
5 2e-8 7 7 7 5e+6 59
6 2e-10 7 7 7 7 7
7 2e-12 7 7 7 7 7

We see that allowing pivots as small as Hjj = 10- P is likely to give cond(KB) = l0P
at some stage, except in the fortuitous case where are there are m or more small
pivots.

For the degenerate problem, the following values of cond(KB) were obtained:

Itn A Hio: 0.1 le-4 le-20

1 2e-2 14 14 14
2 2e-4 23 23 23
3 6e-5 11 le+3 le+3
4 2e-5 114 114 7e+6
5 2e-7 8e+3 8e+3 le+9
6 2e-9 8e+5 8e+5 le+13
7 2e-11 8e+7 8e+7 2e+16
8 2e-13 8e+9 8e+9 00

We see that very small pivots allow the condition of KB to deteriorate seriously.
We cannot expect a method based on AH-1AT to make meaningful progress on this
example beyond the sixth iteration. Since degeneracy is a feature of most real-life
problems, it seems clear that small H pivots must be avoided if stability is to be
assured.

To date, implementations based on AII-AT [LMS90] or some other "unstable"
factorization [VC91] appear capable of attaining 8 digits of precision on most real-
life applications, but occasionally attain only 6 digits or less. This is commendable
performance, since 6 digits is undoubtedly adequate for most practitioners. It is the
"occasionally less" that we maintain some concern about!
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6. Implementation Details

The remaining discussion concerns our present implementation as it applies to LP
problems (Q = 0). When y or b is nonzero in (2.1) the problem being solved is
in fact a QP. A diagonal Q could easily be incorporated, as in [CLMS90]. The
implementation is called PDQ1 (Primal-Dual QP code, version 1). We intend to
allow a more general sparse Q in the future.

Various run-time parameters are used in PDQ1 to define starting points, stopping
conditions, etc. (see below). Note that they are applied after the problem has been
scaled. We assume that all computations are performed with about 16 digits of
precision.

We do not perform any preprocessing of the data other than scaling. For exam-
ple, we do not attempt to discard any rows or columns of A. (Nor do we attempt to
fix variables on their bounds as the iterates converge.) In practice, of course, prepro-
cessing can be very successful in reducing the problem dimensions and improving the
numerical performance of solution algorithms. Our aim is to deal directly with the
problem data and achieve reliability in the presence of redundant constraints, null
variables, etc. (since preprocessors are not guaranteed to eliminate such difficulties).

We make an exception with regard to scaling, since we wish to solve an entire set
of test problems with a single set of run-time parameters. Without scaling, exces-
sively cautious parameter values may be needed to achieve reasonable performance.

6.1. Scaling

Row and column scales are first determined by an iterative procedure that tends
to make tl -elements of A close to one [FouS2]. An "effective right-hand side" v is
then defincd according to

V = b - 1: a,/, - 1:ai - 1:a t,(6.1)
I) =uJ 1, >0 u, <0

and the row scales are applied to v to obtain the quantities f and o =_ 11v1. If a > 1,
all row and column scales are multiplied by a.

This is the scaling procedure used in MINOS [MS87]. In most cases it has the
effect of making I]i*I .z 1, where V is the solution of the scaled problem. As
noted elsewhere [GMSW89,Marx89], the test problems grow7, growl5 and grow22
are exceptions in that 1[g*[[ 107 . To assist such cases we have implemented an
additional scaling that takes effect if v = 0 in (6.1).

The grow problems happen to be of the form

min cTT subject to Ax =0, 0<x<u.

We first note that the optimal solution satisfies c7 x* < 0 (since x = 0 is a feasible
point). Assuming x* 0 0, we can then say that X3 = u3 for at least one j (since if
some feasible point satisfies 0 < x < u, the point px is also feasible for some p > 1
and it has an improved objective value).

It follows that if r E min, u, > 1, a smaller IIIl will result if all the scales are
multiplied by r.
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For the grow problems we found that r 3000, and the additional scaling by
r reduced I IJ from 107 to 104 and improved the reliability of the solves with K.
The effective right-hand side v was zero for one other problem (sc205). In this case,
r = 100 and the extra scaling reduced the iteration count from 15 to 11.

6.2. Scaling c

Once scale factors are obtained as above, they are applied to the data A, b, c, 1, U.
A further scale factor is then applied to c to make 1Icil s 1.3 In most cases the eflect
is to make I11*11 ; 1 for the scaled problem.

6.3. Starting

The initial values for the scaled primal and dual variables were chosen as follows
(with o = Co = 1). Recall that the initial values of x and 7r do not affect the
subsequent iterations (except that x is used to define the initial sl and s2).

* xj = 0 if zero lies between the bounds; otherwise, xj = 1j or ij, whichever
bound is nearest zero.

* (SI)j = max(0, xj - 1j); (32)j = max( o,ui - x,).

* ir =0.

0 yj = zj = Co.

The initial value of 1 was set to balance the pal ts of the residual vector in (2.2) that
do and do not depend on ti (with Ao = 0.1):

* 11 = P01f0112/Vnb Und,

where nbound (< 2n) is the number of finite upper and lower bounds.

6.4. Stopping

If (x,sl,s 2) and (r,z,y) are primal and dual feasible respectively, the duality gap
(the difference between the primal and dual objectives) is

T +i1 ,T T-~

STZ + STY " (cTx + "2XIOX + lpTp) - (bTlr + ITz UTy - XTOX - Prp),

where Q = Q + 2. The stopping criterion for LP problems required the following,
with 6fea = bopt = 1 0 -d meaning a request for d digits of accuracy (d = 6 or 8):

* 1112/(1 + IlXll) 6fea.

* I1t112/(1 + 11711) -- fea"
3The Euclidean norm II. 112 is required for terms in the merit function IIlf II2. For other vectors

v of length n we define IlvJl - E Ivl/v\ (which approximates I1v112 but is cheaper to evaluate).
Since c may be sparse, we scale it by E Ic/vr,, where it, is the number of nonzeros in c. Using
n: in place of n affected the iteration counts for many of the test problems-on average favorably
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* (SfTZ + $y)/(1 + IcTxI) bopt.

After each iteration, a minimum value of A is defined in terms of the objective
function and the optimality tolerance. In the LP case,

* Amin - (1 + IcTx)6opt/(lOnbound).

If the current y is below 2ynn, then it is not reduced for the next iteration.

6.5. Regularization

The values - = 10- and 6 = 10- 5 were used, with seemingly satisfactory results.
Larger values may perturb the solution too much, and smaller values can lead to
near-singularity in K and perhaps divergence of the iterates.

Recall that the regularization terms in the objective are IhTXI 2 + .16rHI2, with

HxH ; 1 and irJIJ l 1 near a solution. For many problems we have observed that
II7rlI decreases sharply in the final primal-dual iterations, showing that a nonzero b
helps resolve some ambiguity in the dual solution.

In iine with the theory of [MM79,Man84], there is no similar decrease in JXJ
when -i is rather small.

6.6. Solving the KKT Systems

To date we have used the Harwell Subroutine Library package MA27 [DR82,DR83]
to solve the reduced KKT systems. This is a multifrontal code designed to perform
well on vector machines on matrices that are definite or nearly definite (i.e., most
eigenvalues have the same sign).,

When there are no free variables or dense columns, the tolerances are such that
lD = -AH-'AT for most of the early iterations. The performance should then be
similar to other Cholesky-based implementations.

As the optimal solution is approached, many diagonals of H bccome small and
IB becomes more indefinite as its dimension increases. In some cases the MA27
Factor generates substantially more nonzeros than predicted by the Analyze, and
the iteration time deteriorates significantly.

As always, improvements in computation time will come from speeding up the
KKT solves. A major modification of MA27 is being developed as MA47 [DGRST89],
and we expect that its performance in the KKT context will be considerably im-
proved. A promising alternative is the code described recently in [FM91].
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7. Numerical Results

In this section we present results obtained from the netlib collection of LP test
problems [Gay85]. One aim is to explore the probable dimensions of the reduced
KKT systems that must be solved (and determine how often a new Analyze is
needed).

Another aim is to show that a primal-dual barrier algorithm similar to the ones in
[Meh89,Meh9O,LMS89,LMS90] can achieve comparably low iteration counts without
the benefit of preprocessing (other than scaling) and with relatively simple starting
conditions and a straightforward reduction of u each iteration. This is partly due
to the improved reliability of the numerical linear algebra in the presence of free
variables, dense columns, and near-singularity.

During the code development, occasional high iteration counts were usually
found to be the result of lax tolerances in forming and solving the reduced KKT
systems (just as a simplex code could be expected to iterate indefinitely if an un-
reliable basis package were used). With the current MA27 factorizer, it remains
desirable to use lax tolerances tentatively (to enhance sparsity), since they are of-
ten adequate. Provision for iterative refinement and tightening of the factorization
tolerances (Section 4.1) seems to provide a reliable safeguard.

As an example, most of the test problems solved successfully with the tolerances
fixed at Htol = 10- 8 and factol = 0.001. This is extremely lax in terms of con-
ventional Gaussian elimination, but note that implementations based on AII-IAT
are effectively using Htol = 0 and factol = 0, with no increase possible. Iterative
refinement can again be invoked, but that alone may be unsuccessful.

7.1. Dimension of the Reduced KKT Systems

Let nk be the dimension of the reduced KKT system KB (3.3) at iteration k, and
let rk = nk/m. The first graph in Figure 1 plots the ratios rk for a represeitative
selection of problems (using Htol = 10- 6 and requesting 8 digits of accuracy). The
name of each problem appears near the end of the associated plot.

The value rk = 1 implies that K8 = Al-lAT at iteration k. For example,
problems scsd6 and ship12l both give fu!,y reduced systems at the beginning, since
all elements of B are of order I initially aid there are no dense columns. In contrast,
rk ; 2 for most of the pilots iterations, because almost m columns of A contain 10
or more nonzeros and are included in B throughout.

In general, rk stays almost constant until the final iterations, when many diago-
nals of H start falling below Htol. The dimension of KB increases as more columns
of A are included in B.

Similarly, let nZk be the number of nonzeros in the MA27 factorizatiom of K, at
iteration k, and let Fk = nZk/nzl. (The minimum number of nonzeros happens to
occur at the first iteration.) The second graph in Figure 1 plots the ratios itk for
the same problems. The values fk > 2 represent a serious loss of sparsity in order
to preserve stability.

Some observations follow.
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Figure 1: The dimension of the reduced KKT systems tB (relative to m), and the
number of nonzeros in the MA27 factors (relative to the first factorization).

* The dimension of KB changes from its previous value rather more than half
of the time. This determines how many times a new Analyze is needed. Soine
statistics are given in Table 1.

o The cpu time for an MA27 Analyze is usually moderate compared to a Factor,
but sometimes it can be substantial. Table 1 shows how much time is spept
in each phase, as a percentage of the total cpu time. (There is normally one
Factor per iteration, except on rare occasions when the stability tolerances are
tightened.)

o There is typically a sharp increase in the MA27 Factor nonzeros during the
final iterations. In particular, requesting 8 digits of accuracy rather than 6
carries a substantial cost.

These matters reflect the cost of stability compared to implementations based on
AIP-lAT (for which rk = rk = 1 throughout).
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Analyze Factor Analyze time Factor time
scsd6 11 12 20% 32%
shipl2l 14 19 18% 30%
25fv47 14 23 13% 72%
pilotja 19 32 16% 75%
pilots 20 35 15% 81%
80bau3b 38 42 29% 45%
degenS 9 28 29% 66%

Table 1: The number of MA27 Analyze and Factor calls, and the percentage of time
spent in each.

7.2. Performance on the netlib Test Set

Table 2 lists the iteration counts for PDQ1 in solving the first 70 LP test problems
in netlib. We give results for both 6 and 8-digit accuracy. They are compared
to the iteration counts recorded by OBI in [LMS90], where 8-digit accuracy was
also requested (and in most cases obtained). OBI used some preprocessing of the
data [LMS89]. The column labeled "Diff" indicates significant differences between
columns 1 and 3. A + means PDQ1 required more iterations than OBI.

Some observations follow.

9 The stability tolerances Htol = 10-6 and factol = 0.01 proved to be reliable
in almost all cases. The grow problems, scsd8, pilotja and pilots required
iterative refinement at certain points and ultimately made one request for
stricter tolerances (Htol = 10- and factol = 0.1).

* The grow problems illustrate the effect of inaccurate solution of the KKT sys-
tem. For the last few iterations there were symptoms of difficulty (refinement,
reversion to pure primal-lual, backtracking in the linesearch) and stricter tol-
erances were finally requested for the last iteration. When lHtol = 106 and
factol = 0.1 were used from the beginning, no symptoms of numerical error
arose and the iteration counts were 19, 21 and 21 (a significant improvement
for the last two cases, though still more than achieved by 0131).

* It is not clear why significantly more iterations were required for cycle, wood1p
and woodw. These problems are from the same source and probably have a
distinguishing characteristic that would explain the 0131 advantage.

* The first three pilot problems solved in significantly fewer iterations than with
OB1. About 80 free variables and some notoriously narrow bounds (l = 0,
uj = I0-5) do not appear to have caused difficulty.

* Otherwise, we see that the iteration counts for OB1 and PDQ1 are comlparable
for most problems.
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Code: OBI PDQ1 PDQ1 Diff Code: OBI PDQ1 PDQ1 Diff
Digits: 8 6 8 Digits: 8 6 8
251v47 25 23 23 recipe 10 13 15 +
80bau3b 38 37 42 sc205 11 11 13
adlittle 12 12 13 scagr25 16 16 17
aftro 9 9 10 scagr7 12 13 14
agg 24 19 21 scfzml 17 17 18
agg2 18 19 21 scfxm2 19 19 20
agg3 17 19 21 8cfrm3 20 19 21
bandm 17 16 18 scorpion 14 12 14
beaconfd 10 18 21 ++ scrs8 27 20 22 -
boreS-i 18 21 23 + scsdl 11 9 9
brandy 19 17 19 scsd6 12 11 12
capri 18 19 20 scsd8 10 11 15 +
cycle 30 37 43 +++ sctapl 15 14 15
czprob 35 33 36 sctap2 20 15 15 -
degen2 14 15 17 scrap3 17 16 16
degenS 20 26 28 + seba 19 18 20
e226 22 18 20 sharelb 20 17 18

etamacro 29 19 23 - share~b 12 11 12
fffff8O0 2S 23 27 shell 21 20 21
forplan ?. 23 25 shipO4l 15 17 18
ganges 16 16 18 shipO4s 15 17 18
gfrdpnc 18 17 18 shipO81 16 16 18
greenbea 11 48 51 ++ shipO8s 14 16 17
greenbeb 33 34 38 + shipll 18 17 19
grow7 14 17 19 + shipl2s 18 17 18
growl5 16 18 26 ++ sierra 18 18 20
grow22 16 18 30 ++ stair 16 17 17
israel 23 22 23 standata 15 17 19
kb2 15 13 13 standinps 24 24 25
nesm 30 23 30 stocforl 19 13 13 -

pilotja 46 28 31 --- stocfor2 22 33 33 ++
pilotwe 46 30 33 --- tuff 19 24 27 +
pilot4 36 25 27 -- vtpbase 13 15 18 +
pilotnov 20 16 17 woodlp 14 27 29 +++

pilots 29 31 34 + woodw 20 26 30 ++

Table 2: Iteration counts for OB1 (requesting 8 digits) and PDQ1 (6 and 8 digits).

9 In terms of cpu time, the results would be far from comparable. We defer such
statistics until a more efficient indefinite solver is installed.
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8. Conclusions

For various good reasons, most interior-point codes for LP (and for separable QP)
have been based on Cholesky factors of matrices of the form AH-lAT. Excellent per-
formance has been achieved (notably by [LMS90,Meh90,CLMS90]) and the primary
sources of difficulty have been thought to be dense columns and free variables.

For general QP problems a full KKT system must be solved [Pon90], and it is be-
coming increasingly recognized that such an approach removes the above-mentioned
difficulties (e.g. [Tur90,GMPS90,FM91,Van91]).

Here we have emphasized the fact that the real source of numerical error lies in
pivoting on small diagonals of H in the presence of primal degeneracy. Reducing
a KKT system K to AH-AT is equivalent to pivoting on all diagonals of H, re-
gardless of size. We suggest forming "reduced KKT systems" by pivoting on just
the diagonals of H that are suitably large. This allows us to avoid factorizing a full
IKT system, and often leads to use of AII-AT in the early iterations when it is
numerically safe.

The primary advantage is intended to be numerical reliability. The drawbacks
are that a new Analyze is required each time the reduced KKT system changes in
dimension, and that we are dependent on the efficiency of a symmetric indefinite
factorizer. Some new codes rDGRST89,FM91] promise to narrow the gap between
indefinite and definite solvers. A variant of "reduced KKT systems" has recently
been given in [Van9l]. An ad'antage is that it avoids the need for an indefinite
solver, but in its present form it is susceptible to the normal dangers of small pivots
in II.

In terms of overall strategy, it remains to be seen which of the approaches in
[LMS90,Tur9O,FM91,Van9l] and the present paper will offer the most favorable
balance between efficiency and reliability.
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